Natural Sciences and Society

Arthur Lyon Dahl Ph.D.

International Environment Forum (IEF) http://iefworld.org

ebbf - ethical business building the future http://ebbf.org

ABS/IEF, Toronto, Canada, 9 August 2014

Globalization

- is the logical next step in human evolution, but
- Economic globalization is driven by powerful governments and multinational businesses for their own benefit
- Social globalization is being strongly resisted
- Globalization of environmental problems threatens future sustainability
- Globalization of information makes us aware

Main trends in science

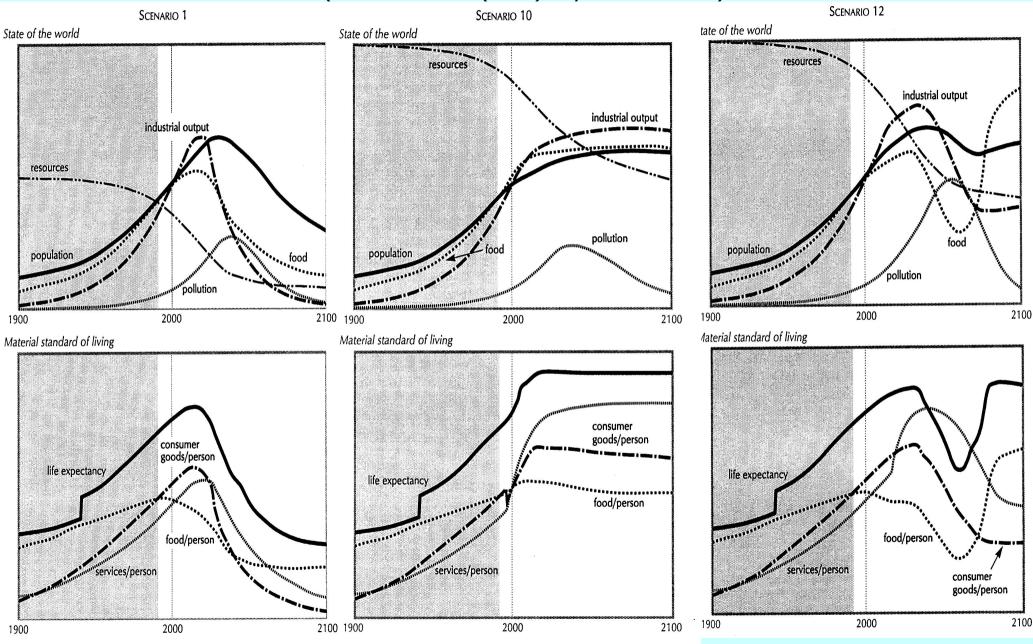
- Increasing specialization: renaissance polymath => gentleman naturalist => extreme specialist
- Increasing reductionism
- Technological sophistication
- Teamwork multiple authors
- Grantsmanship research funding
- Citation ratings, high profile journals
- Peer review quality vs. conformity

Emerging needs

- Sustainability requires transdisciplinary approaches - natural and social sciences
- Integrated complex systems perspectives
- Emergent properties of complex systems
- Tipping points, sudden transformations, non-linear system dynamics, chaos
- Multiple levels of organization
- Linking science and policy

Science today is poorly structured to respond to these needs

Systems Modeling

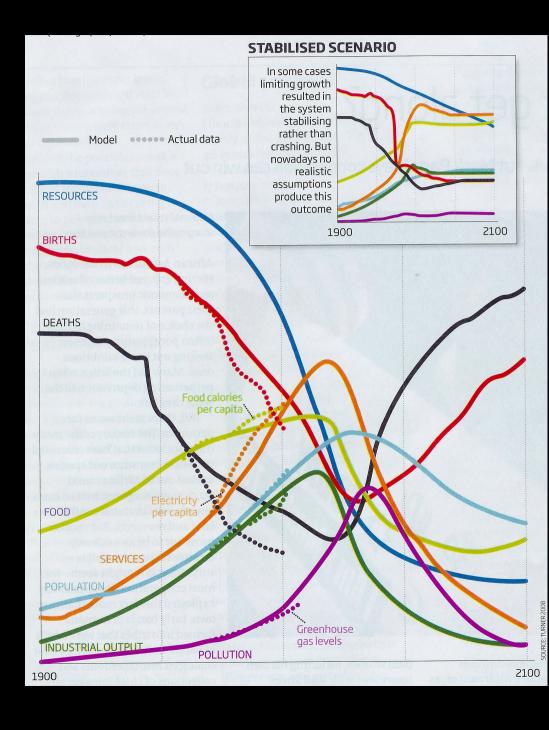

Meadows, Donella H., Dennis L. Meadows, Jorgen Randers and William W. Behrens III. 1972. *The Limits to Growth*. A Report for the Club of Rome's Project on the Predicament of mankind.

Meadows, Donella H., Dennis L. Meadows and Jorgen Randers. 1992. *Beyond the Limits: Confronting Global Collapse, Envisioning a Sustainable Future*. Meadows, Donella, Jorgen Randers and Dennis Meadows. 2004. *Limits to Growth: The 30 -Year Update*.

Meadows, Donella. 1999. Leverage Points: Places to Intervene in a System. Randers, Jorgen. 2012. 2052: A Global Forecast for the Next Forty Years.

Scenarios from World 3

(Meadows et al. (1992) Beyond the Limits)


Business as usual

Transition 1995

Transition 2015

Where are we now?

MacKenzie, Debora. 2012 Doomsday Book. *New Scientist*, 7 January 2012, pp. 38-41.

Sustainability Science

ICSU, IGBP, IHDP, WCRP 2001

"The cultivation, integration, and application of knowledge about Earth systems gained especially from the holistic and historical sciences (such as geology, ecology, climatology, oceanography) coordinated with knowledge about human interrelationships gained from the social sciences and humanities, in order to evaluate, mitigate, and minimize the consequences, regionally and worldwide, of human impacts on planetary systems and on societies across the globe and into the future – that is, in order that humans can be knowledgeable Earth stewards."

It must encompass different magnitudes of scales (of time, space, and function), multiple balances (dynamics), multiple actors (interests) and multiple failures (systemic faults). [Wikipedia]

Arthur Lyon Dahl. 1996. *The Eco Principle: Ecology and Economics in Symbiosis* Fritjof Capra and Pier Luigi Luisi. 2014. *The Systems View of Life: A Unifying Vision*.

Ecological Economics

Nicholas Georgescu-Roegen. 1971. The Entropy Law and the Economic Process. (second law of thermodynamics, bioeconomics, ecological economics) Herman Daly: Steady-State Economics (1977); For the *Common Good*, (1989, with theologian John B. Cobb, Jr.); Beyond Growth (1996); Ecological Economics and the Ecology of Economics (1999) Arthur Lyon Dahl. 1996. The Eco Principle: Ecology and Economics in Symbiosis. Eric D. Beinhocker. 2006. The Origin of Wealth: Evolution, Complexity, and the Radical Remaking of Economics. Tim Jackson. 2009. Prosperity Without Growth. Martin A. Nowak. 2011. SuperCooperators: Altruism, Evolution, and Why We Need Each Other to Succeed.

Tensions

- Ideal of scientific neutrality versus social engagement
- Quality peer review versus citizen science and indigenous knowledge
- Independent investigation (pure science) versus political/donor/grant-driven priorities (applied science)
- Discipline-based academic careers versus multidisciplinarity
- Public sector/academic research versus corporate research for profit
- Advanced country science versus developing country science

The Iron Curtains

- Barriers between disciplines (not publishing beyond your field, specialized language for ingroup, peer review by orthodoxy)
- Barrier between natural and social sciences
- Barrier between science and religion (untestable, subjective, not an acceptable source or field of study)

Breaking down the silos (post-2015 dialogue)

Anti-science Movement

- Vested interests: tobacco industry and lung cancer; oil/coal industry and climate change
- Fundamentalist religion and evolution
- Unlimited funding (\$1b/yr for climate skeptics)
- Falsehood as public information, deliberate disinformation, distortion, cherry-picked data, etc.
- Excellent marketing, psychological sophistication, dominant media
- Front organizations, infiltrate scientific journals
- Seeding doubt and destroying confidence in science

Science for Policy

- UNEP Global Environment Outlook reports
- Intergovernmental Panel on Climate Change (IPCC)
- Intergovernmental science-policy Platform on Biodiversity and Ecosystem Services (IPBES)
- planned UN Global Sustainable Development Report

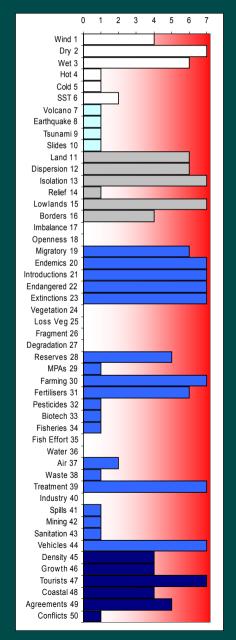
Scientific Advisory Processes

- National State of the Environment and Sustainability reports 150 countries
- State of the Marine Environment 1982, 1990, 2001 by Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP) 1969
- UNEP Global Environment Outlook 1997, 2000, 2002, 2007, 2012+ regional
- UNEP Global Biodiversity Assessment 1995
- Millennium Ecosystem Assessment 2005
- Global International Waters Assessment 2006
- International Assessment of Agricultural Knowledge, Science and Technology for Development 2008
- Intergovernmental Panel on Climate Change (IPCC) 1988 Geneva reports 1990, 1995, 2001, 2007, 2013-2014
- Intergovernmental Platform on Biodiversity & Ecosystem Services (IPBES) 2013 Bonn
- planned UN Global Sustainable Development Report

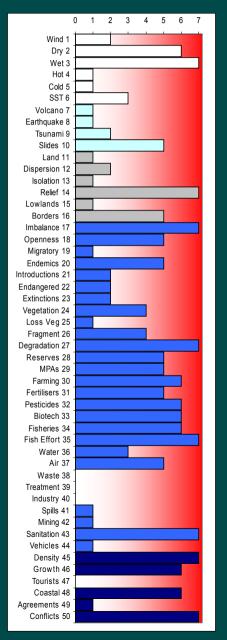
Science-derived Sustainability Indicators

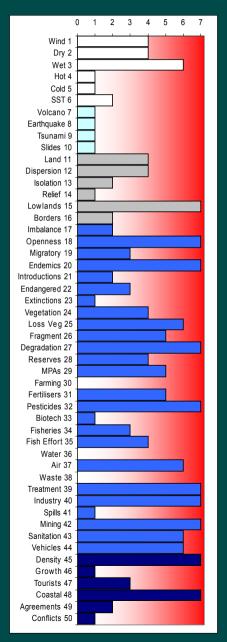
- CSD Work Programme on Indicators 1994-2006
- Environmental Vulnerability Index 2004
- Environmental Sustainability Index revised 2005
- Environmental Performance Index 2008
- Now preparing Sustainable Development Goals and Indicators for post-2015

The Environmental Vulnerability Index EVI 2004



SOPAC


Cook Islands


India

Trinidad & Tobago

Limited political receptivity

- Short-term perspective, next election
- Powerful economic interests and lobbies
- Corruption
- Lack of understanding of science
- Ideology before rationality
- Legislating against science
- Limited attention
- Do not like science making them look bad
- Lack of leadership and political will to take necessary but unpopular decisions

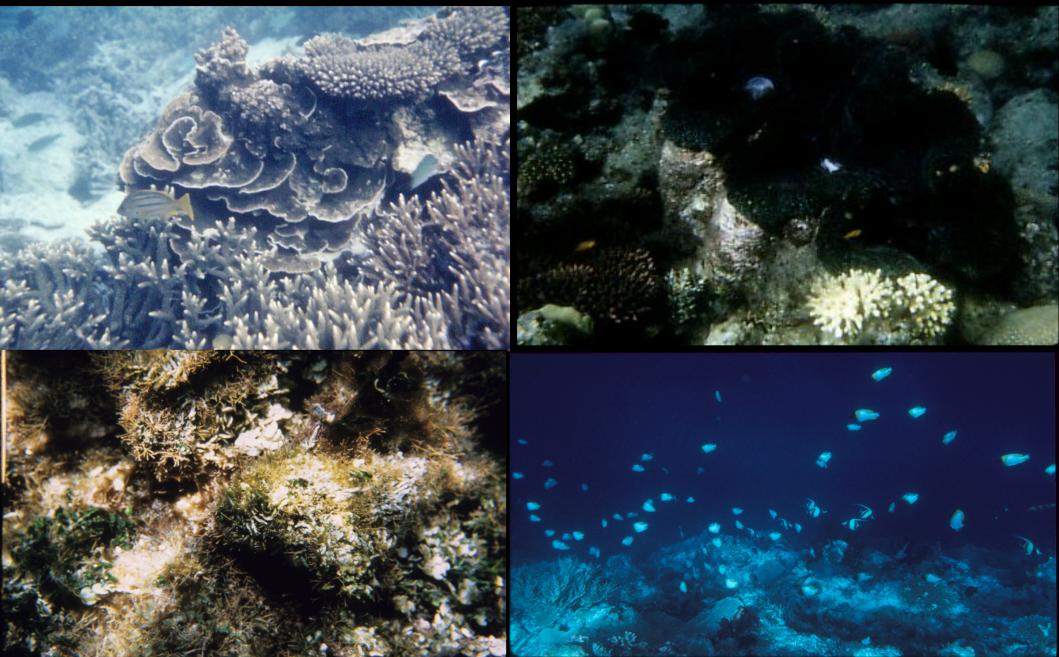
Science has failed to solve problems

- Scientific reality versus political reality
- Priority to economics
- Dominance of short-term thinking
- Assumption of technological fix
- Scientific understanding does not usually change behaviour
- Grudging acknowledgment that something more is needed (but not religion)

Science demonstrates unity

- Validity of spiritual principles illustrated by science
- Coral reef as complex ecosystem illustrating unity in diversity, balance, symbiosis and cooperation, emergent properties

Coral reef ecosystem L'écosystème du récif corallien


Corals animal/plant symbiosis Coraux animaux/algues en symbiose

N

METRIC

High reef biodiversity Haute biodiversité récifale

400 corals, 4000 molluscs, 1500 fish just on the Great Barrier Reef 400 coraux, 4000 mollusques, 1500 poissons juste sur le Grand Récif Barrière

Complex spatial organization Organisation spatiale complexe

Coral reef like a city Récif comme une ville

Cleaner fish (collaboration) Poisson nettoyeur (collaboration)

Clownfish and anemone (mutual assistance) Poisson clown et anémone (aide mutuelle)

Public mobilization for science

- Science education in schools
- Science journalism
- Bringing science to the grassroots level
- Public participation in monitoring and assessment
- Citizen Science (reefwatch, streamwatch)
- Indigenous science (SPREP, UNESCO)
- Local scientific institutions, science accessible to everyone

New paradigm for science

Scientific and technological activity... must cease to be the patrimony of advantaged segments of society, and must be so organised as to permit people everywhere to participate in such activity on the basis of capacity....

[This] will require the establishment of viable centres of learning throughout the world, institutions that will enhance the capability of the world's peoples to participate in the generation and application of knowledge.

Science & Technology for everyone

...the majority of technological development is driven by market forces that do not reflect the basic needs of the world's peoples. Furthermore, the emphasis on the transfer of technology without accompanying efforts to increase participation in the generation and application of knowledge can only serve to widen the gap between the rich and the poor-the 'developers' and the 'users' of technology. Developing the capacity for identifying technological need and for technological innovation and adaptation—in light of societal needs and environmental constraints—will be vital to social progress. The transformation of complex social realities will require the development of institutional capacity within local populations to create and apply knowledge in ways that address the specific needs of that population. This question of institutional capacity (e.g. the establishment of regional centers of research and training) constitutes a major challenge to sustainable development. If successfully met, however, the result will be to break the present unbalanced flow of knowledge in the world and dissociate development from ill-conceived processes of modernization. "Modern" technologies will be characterized by an orientation towards addressing locally defined needs and by priorities that take into account both the material and moral prosperity of society as a whole.

(Bahá'í International Community, Rethinking Prosperity: Forging Alternatives to a Culture of Consumerism, 2010)

Arthur Lyon

Arthur Lyon Dath (n press) Putting the Individual at the Centre of Development: O Indicators of Weil-Deing for a New Social Contract. Paper presented at the Third Rencontres Internationales de Reims on Sustainability Studies. Post-2015 Sustainable Development Goals: Towards a New Social Contract, Reims, France, 18-20 June 2013. http://iefworld.org/ddahl13a

ebbf - ethical busines http://el

ABS/IEF, Toronto, Ca

Main trends in science

- Increasing specialization: renaissance polymath => gentleman naturalist => extreme specialist
- Increasing reductionism
- Technological sophistication
- Teamwork multiple authors
- Grantsmanship research funding
- · Citation ratings, high profile journals
- Peer review quality vs. conformity

4

Emerging needs

- Sustainability requires transdisciplinary approaches natural and social sciences
- Integrated complex systems perspectives
- Emergent properties of complex systems
- Tipping points, sudden transformations, non-linear system dynamics, chaos
- Multiple levels of organization
- Linking science and policy

Science today is poorly structured to respond to these needs

5

Systems Modeling

Meadows, Donella H., Dennis L. Meadows, Jorgen Randers and William W. Behrens III. 1972. *The Limits to Growth*. A Report for the Club of Rome's Project on the Predicament of mankind.

Meadows, Donella H., Dennis L. Meadows and Jorgen Randers. 1992. *Beyond the Limits: Confronting Global Collapse, Envisioning a Sustainable Future.* Meadows, Donella, Jorgen Randers and Dennis Meadows. 2004. *Limits to Growth: The 30 -Year Update.*

Meadows, Donella. 1999. Leverage Points: Places to Intervene in a System. Randers, Jorgen. 2012. 2052: A Global Forecast for the Next Forty Years.

6

Meadows, Donella. 1999. Leverage Points: Places to Intervene in a System. Hartland, Vermont: The Sustainability Institute. 19 p.

Meadows, Donella H., Dennis L. Meadows, Jorgen Randers and William W. Behrens III. 1972. The Limits to Growth. A Report for the Club of Rome's Project on the Predicament of mankind. Universe Books, New York. 205 p.

Meadows, Donella H., Dennis L. Meadows and Jorgen Randers. 1992. Beyond the Limits: Confronting Global Collapse, Envisioning a Sustainable Future. White River Junction, Vermont: Chelsea Green Publishing Company.

Meadows, Donella, Jorgen Randers and Dennis Meadows. 2004. Limits to Growth: The 30 -Year Update. Chelsea Green Publishing Company, White River Junction, Vermont. 338 p.

Randers, Jorgen. 2012. 2052: A Global Forecast for the Next Forty Years. A Report to the Club of Rome. Commemorating the 40th Anniversary of The Limits to Growth. Chelsea Green Publishing, White River Junction, Vermont. 392 p.

Meadows, Donella H., Dennis L. Meadows and Jorgen Randers. 1992. Beyond the Limits: Confronting Global Collapse, Envisioning a Sustainable Future. White River Junction, Vermont: Chelsea Green Publishing Company.

Meadows, Donella, Jorgen Randers and Dennis Meadows. 2004. *Limits to Growth: The 30 -Year Update*. Chelsea Green Publishing Company, White River Junction, Vermont. 338 p.

Sustainability Science ICSU, IGBP, IHDP, WCRP 2001 "The cultivation, integration, and application of knowledge about Earth systems gained especially from the holistic and historical sciences (such as geology, ecology, climatology, oceanography) coordinated with knowledge about human interrelationships gained from the social sciences and humanities, in order to evaluate, mitigate, and minimize the consequences, regionally and worldwide, of human impacts on planetary systems and on societies across the globe and into the future - that is, in order that humans can be knowledgeable Earth stewards." It must encompass different magnitudes of scales (of time, space, and function), multiple balances (dynamics), multiple actors (interests) and multiple failures (systemic faults). [Wikipedia] Arthur Lyon Dahl. 1996. The Eco Principle: Ecology and Economics in **Symbiosis** Fritjof Capra and Pier Luigi Luisi. 2014. The Systems View of Life: A 9 Unifying Vision.

http://en.wikipedia.org/wiki/Sustainability_science

Capra, Fritjof, and Pier Luigi Luisi. 2014. The Systems View of Life: A Unifying Vision. Cambridge: Cambridge University Press. 498 p.

Dahl, Arthur Lyon. 1996. The Eco Principle: Ecology and Economics in Symbiosis. Zed Books Ltd, London, and George Ronald, Oxford.

Ecological Economics

Nicholas Georgescu-Roegen. 1971. *The Entropy Law and the Economic Process*. (second law of thermodynamics, bioeconomics, ecological economics) Herman Daly: *Steady-State Economics* (1977); *For the Common Good*, (1989, with theologian John B. Cobb, Jr.); *Beyond Growth* (1996); *Ecological Economics and the Ecology of Economics* (1999) Arthur Lyon Dahl. 1996. *The Eco Principle: Ecology and Economics in Symbiosis*. Eric D. Beinhocker. 2006. *The Origin of Wealth: Evolution, Complexity, and the Radical Remaking of Economics*. Tim Jackson. 2009. *Prosperity Without Growth*. Martin A. Nowak. 2011. *SuperCooperators: Altruism, Evolution, and Why We Need Each Other to Succeed*.

10

Beinhocker, Eric D. 2006. The Origin of Wealth: Evolution, Complexity, and the Radical Remaking of Economics. Cambridge: Harvard Business School Press, and London: Random House Business Books. 526 p.

Dahl, Arthur Lyon. 1996. The Eco Principle: Ecology and Economics in Symbiosis. Zed Books Ltd, London, and George Ronald, Oxford.

Daly, Herman: *Steady-State Economics* (1977); *For the Common Good*, (1989, with theologian John B. Cobb, Jr.); *Beyond Growth* (1996); *Ecological Economics and the Ecology of Economics* (1999)

Georgescu-Roegen, Nicholas. 1971. The Entropy Law and the Economic Process.

Jackson, Tim. 2009. Prosperity Without Growth. London: Earthscan. 264 p.

Nowak, Martin A., with Roger Highfield. 2011. SuperCooperators: Altruism, Evolution, and Why We Need Each Other to Succeed. New York: Free Press. 330 p.

Tensions

- Ideal of scientific neutrality versus social engagement
- Quality peer review versus citizen science and indigenous knowledge
- Independent investigation (pure science) versus political/donor/grant-driven priorities (applied science)
- Discipline-based academic careers versus multidisciplinarity
- Public sector/academic research versus corporate research for profit
- Advanced country science versus developing country science

The Iron Curtains

- Barriers between disciplines (not publishing beyond your field, specialized language for ingroup, peer review by orthodoxy)
- Barrier between natural and social sciences
- Barrier between science and religion (untestable, subjective, not an acceptable source or field of study)

Breaking down the silos (post-2015 dialogue)

Anti-science Movement

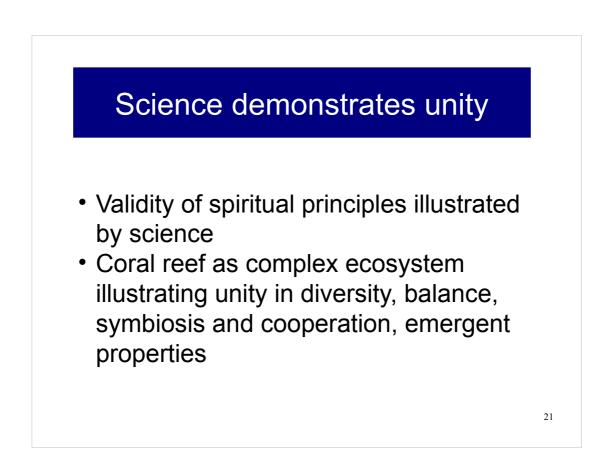
- Vested interests: tobacco industry and lung cancer; oil/coal industry and climate change
- · Fundamentalist religion and evolution
- Unlimited funding (\$1b/yr for climate skeptics)
- Falsehood as public information, deliberate disinformation, distortion, cherry-picked data, etc.
- Excellent marketing, psychological sophistication, dominant media
- Front organizations, infiltrate scientific journals
- Seeding doubt and destroying confidence in science

Science for Policy

- UNEP Global Environment Outlook reports
- Intergovernmental Panel on Climate Change (IPCC)
- Intergovernmental science-policy Platform on Biodiversity and Ecosystem Services (IPBES)
- planned UN Global Sustainable Development Report

Dahl, Arthur Lyon. 2008e. Overview of environmental assessment landscape at national level: State of state-of-the-environment reporting: Note by the Executive Director. UNEP/GC.25/INF/12/Add.1, 45 p. http://www.unep.org/gc/gcss-x/download.asp? ID=1015

The Environmental Vulnerability Index EVI 2004


Cook Islands	India	Trinidad & Tobago
-lazar®	Hazarð	
Restat	Resiziti	Resista
Dan 5a@	Dandad	Dan delg
0 1 2 3 4 5 6 7	0 1 2 3 4 5 6 7	0 1 2 3 4 5 6 7
Wind 1 Dry 2	Wind 1 Dry 2	Wind 1 Dry 2
Wet 3	Wet 3	Wet 3
Hot 4 Cold 5	Hot 4 Cold 5	Hot 4 Cold 5
SST 6	SST 6	SST6
Volcano 7	Volcano 7	Volcano 7
Earthquake 8	Earthquake 8	Earthquake 8 Tsunami 9
Slides 10	Sides 10	Slides 10
Land 11	Land 11	Land 11
Dispersion 12	Dispersion 12	Dispersion 12
Relief 14	Relief 14	Relief 14
Lowlands 15	Lowlands 15	Lowlands 15
Borders 16	Borders 16 Imbalance 17	Borders 16
Openness 18	Openness 18	Openness 18
Migratory 19	Migratory 19	Migratory 19
Endemics 20	Endemics 20	Endemics 20
Endangered 22	Endangered 22	Endangered 22
Extinctions 23	Extinctions 23	Extinctions 23
Vegetation 24 Loss Veg 25	Vegetation 24 Loss Veg 25	Vegetation 24 Loss Veg 25
Fragment 26	Fragment 26	Fragment 26
Degradation 27	Degradation 27	Degradation 27
Reserves 28 MPAs 29	Reserves 28 MPAs 29	Reserves 28 MPAs 29
Farming 30	Farming 30	Farming 30
Fertilisers 31	Fertilisers 31	Fertilisers 31
Pesticides 32 Biotech 33	Pesticides 32 Biotech 33	Pesticides 32 Biotech 33
Fisheries 34	Fisheries 34	Fisheries 34
Fish Effort 35	Fish Effort 35	Fish Effort 35
Water 36 Air 37	Water 36 Air 37	Water 36 Air 37
Waste 38	Waste 38	Waste 38
Treatment 39	Treatment 39	Treatment 39
Industry 40 Spills 41	Industry 40 Spills 41	Industry 40 Soills 41
Mining 42	Mining 42	Mining 42
Sanitation 43	Sanitation 43	Sanitation 43
Vehicles 44 Density 45	Vehicles 44 Density 45	Vehicles 44 Density 45
Density 45 Growth 46	Density 45 Growth 46	Growth 46
Tourists 47	Tourists 47	Tourists 47
Coastal 48	Coastal 48	Coastal 48
Agreements 49 Conflicts 50	Agreements 49 Conflicts 50	Agreements 49 Conflicts 50

Limited political receptivity

- Short-term perspective, next election
- Powerful economic interests and lobbies
- Corruption
- · Lack of understanding of science
- Ideology before rationality
- Legislating against science
- Limited attention
- Do not like science making them look bad
- Lack of leadership and political will to take necessary but unpopular decisions

Science has failed to solve problems

- · Scientific reality versus political reality
- · Priority to economics
- · Dominance of short-term thinking
- Assumption of technological fix
- Scientific understanding does not usually change behaviour
- Grudging acknowledgment that something more is needed (but not religion)

Public mobilization for science

- Science education in schools
- Science journalism
- Bringing science to the grassroots level
- Public participation in monitoring and assessment
- Citizen Science (reefwatch, streamwatch)
- Indigenous science (SPREP, UNESCO)
- Local scientific institutions, science accessible to everyone

Scientific and technological activity... must cease to be the patrimony of advantaged segments of society, and must be so organised as to permit people everywhere to participate in such activity on the basis of capacity.... [This] will require the establishment of viable centres of learning throughout the world, institutions that will enhance the capability of the world's peoples to participate in the generation and application of knowledge. [Baha'i International Community. 1995. The Prosperity of Humankind

Bahá'í International Community. 1995. *The Prosperity of Humankind*. A Statement Prepared by the Bahá'í International Community Office of Public Information, Haifa, Israel. http://iefworld.org/bicpros.htm

Science & Technology for everyone

...the majority of technological development is driven by market forces that do not reflect the basic needs of the world's peoples. Furthermore, the emphasis on the transfer of technology without accompanying efforts to increase participation in the generation and application of knowledge can only serve to widen the gap between the rich and the poor-the 'developers' and the 'users' of technology. Developing the capacity for identifying technological need and for technological innovation and adaptation-in light of societal needs and environmental constraints-will be vital to social progress. The transformation of complex social realities will require the development of institutional capacity within local populations to create and apply knowledge in ways that address the specific needs of that population. This question of institutional capacity (e.g. the establishment of regional centers of research and training) constitutes a major challenge to sustainable development. If successfully met, however, the result will be to break the present unbalanced flow of knowledge in the world and dissociate development from ill-conceived processes of modernization. "Modern" technologies will be characterized by an orientation towards addressing locally defined needs and by priorities that take into account both the material and moral prosperity of society as a whole. 31

(Bahá'í International Community, Rethinking Prosperity: Forging Alternatives to a Culture of Consumerism, 2010)

(Bahá'í International Community, Rethinking Prosperity: Forging Alternatives to a Culture of Consumerism, 2010)